Phonon Angular Momentum Induced by the Temperature Gradient
نویسندگان
چکیده
منابع مشابه
Spin-induced angular momentum switching.
When light is transmitted through optically inhomogeneous and anisotropic media the spatial distribution of light can be modified according to its input polarization state. A complete analysis of this process, based on the paraxial approximation, is presented, and we show how it can be exploited to produce a spin-controlled change in the orbital angular momentum of light beams propagating in pa...
متن کاملOrbital angular momentum mode division filtering for photon-phonon coupling
Stimulated Brillouin scattering (SBS), a fundamental nonlinear interaction between light and acoustic waves occurring in any transparency material, has been broadly studied for several decades and gained rapid progress in integrated photonics recently. However, the SBS noise arising from the unwanted coupling between photons and spontaneous non-coherent phonons in media is inevitable. Here, we ...
متن کاملVelocity - Ion Temperature Gradient Driven Modes and Angular Momentum Transport in Magnetically
Plasma confinement experiments continue to uncover fascinating phenomena that motivate theoretical discussion and exploration. In this thesis, we consider the phenomenon of angular momentum transport in magnetically confined plasmas. Relevant experiments and theoretical developments are presented in order to motivate the derivation of a modified version of the three-field nonlinear Hamaguchi-Ho...
متن کاملTransition temperature of a magnetic semiconductor with angular momentum j.
We employ dynamical mean-field theory to identify the materials properties that optimize T(c) for a generalized double-exchange model. We reach the surprising conclusion that T(c) achieves a maximum when the band angular momentum j equals 3/2 and when the masses in the m(j) = +/- 1/2 and +/-3/2 and subbands are equal. However, we also find that T(c) is significantly reduced as the ratio of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2018
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.121.175301